HafenCity Universität Hamburg

HCU

Universität für Baukunst und Raumentwicklung

HAMBURGS NEUE UNIVERSITÄT Europas erste Hochschule für die gebaute Umwelt

Klaus Mechelke, Thomas Kersten, Maren Lindstaedt

Vergleichende Genauigkeitsuntersuchungen der neuesten Generation terrestrischer Laserscanner

Überblick

- Einführung
- Untersuchte Systeme
- Geometrische Untersuchungen
- Untersuchungen zum Meßrauschen
- Untersuchungen zum Einfluß der Objektfarbe
- Schlußfolgerungen und Ausblick

<u>Einführung</u>

Neue Ausstattungsmerkmale

Unterschiedliche Verfahren

- Unterschiedliche Standards
- Geodätische Merkmale

Untersuchte Systeme

Faro LS880

Trimble GX

Leica ScanStation

Zoller + Fröhlich Imager 5006 (baugleich Leica HDS6000)

Technische Daten (Auswahl)

the for the set

Scanr Merk	ner / mal	Trimble GX	Leica ScanStation	FARO LS880	Z+F IMAGER 5006		
Streckenmessung		Laufzeitv	erfahren	Phasendifferenzverfahren			
Sichtfeld [°]		360 x 60	360 x 270	360 x 320	360 x 310		
Reichweite / Eindeutigkeitsbereich [m]		200	300	< 76	< 79		
Laserklasse / Leistung [mW]		2, 3R	3R	3R / 20	3R / 29		
Scanrate [pts/s]		≤ 5 000	≤ 4 000	≤ 120 000	≤ 500 000		
Winkel- auflösung [°]	Vertikal	0,0017	0,0017	0,009	0,0018		
	Horizontal	0,0017	0,0017	0,009	0,0018		
3D Einzelpunktgenauigkeit		12mm/100m	12mm/100m	k.a.	k.a.		
Kamera		integriert	integriert	extern / option	extern / option		
Neigungssensor		Kompensator	Kompensator	ja	ja		

Geometrische Untersuchungen

- **3D-Testfeld**
- Streckenmessgenauigkeit
- Untersuchung des Neigungssensors / Taumelfehler
- Einfluß des Auftreffwinkels auf die 3D-Genauigkeit

3D-Testfeld

- Untersuchung der **3D-Genauigkeit in Anlehnung** an VDI/VDE 2634 Teil II, III
- Testfeld mit 43 Referenzpunkten, 3D-Genauigkeit <1mm
- Prüfkörper: Kugeln mit **145mm Durchmesser**
- Berechnung von Raumstrecken zwischen den Referenzpunkten in allen Kombinationen
- Soll-Ist Vergleich

HafenCity University Hamburg HCU

3D-Testfeld

	1 Station				Alle Stationen			
Scanner	# dist.	∆d min [mm]	∆d max [mm]	Σ Δd [mm]	# dist.	∆d min [mm]	∆d max [mm]	Σ Δd [mm]
Leica ScanStation	528	-13,8	24,5	38,3	780	-18,5	23,3	41,8
Trimble GX	378	-16,3	37,1	53,4	780	-16,0	31,3	47,3
Z+F Imager 5006	465	-23,5	22,0	45,5	780	-32,8	23,7	56,5
FARO LS880	528	-23,6	22,2	45,8	780	-41,1	30,7	71,8

Untersuchung zur Streckenmessgenauigkeit

- Sollstreckenvergleich, Sollstrecken ermittelt mit Leica TCRP1201
- Zielzeichen f
 ür Scanner: Kugeln / Targets
- Ist-Strecken aus gemittelten Koordinaten von jeweils 3 Scans

Untersuchung des Neigungssensors und des Taumelfehlers

- 12 Kugeln verteilt auf horizontalem Kreis mit 50m Radius
- 3 Scans je Kugel mit höchstmöglicher Auflösung
 - Stativbewegung mit Leica Nivel20 kontrolliert
- Im Scanner-Koordinatensystem sollten alle Kugeln in einer Ebene liegen
- Bei Scannern mit Neigungskompensation: z = konst.!

Untersuchung des Neigungssensors

Neigung der Drehachse aus Nivel20-Messung

Untersuchung des Neigungssensors

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

- Scan einer drehbar gelagerten plangeschliffenen Granitplatte in 10 Winkelpositionen
- Auflösung am Objekt: 3mm
- Referenz: 4 an der Platte montierte Kugeln
- Forderung: ausgleichende Ebenen durch Kugelzentren und Punktwolke sollen konstanten Abstand haben

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit von Flächen

Untersuchung zum Messrauschen

- Scan eines Pr
 üfk
 örpers mit verschiedenen Geometrien
- Auflösung am Objekt: 3mm
- Faro: Daten ungefiltert!

Einfluss der Objektfarbe auf

Messrauschen und Streckenmessgenauigkeit

- Scan von RAL-Farbtafeln mit definiertem Hellbezugswert
- Lageverschiebung der ausgleichenden Ebene durch die Punktwolke
- Betrag des Messrauschens variiert aufgrund von unterschiedlichen Reflektivitäten

HCU | HafenCity University

<u>Einfluss der Objektfarbe auf Messrauschen und</u>

<u>Streckenmessgenauigkeit</u>

Schlussfolgerungen und Ausblick

- Testfeld: ,Realitätsnahes' Messvolumen
- Kreis: guter Ansatz zur Untersuchung von Neigungssensor und Taumelfehler
- Zielgröße für Referenzierung beachten!
- Standard f
 ür Reflektivit
 ätswerte / Standardk
 örper mit definierter Reflektivit
 ät
- Einzelpunktmessung?
- Bekommt der Scanner Tachymeterfunktionalität oder lernen Tachymeter scannen?

HafenCity Universität Hamburg

HCU

Universität für Baukunst und Raumentwicklung

HAMBURGS NEUE UNIVERSITÄT Europas erste Hochschule für die gebaute Umwelt

Vielen Dank für Ihre Aufmerksamkeit!