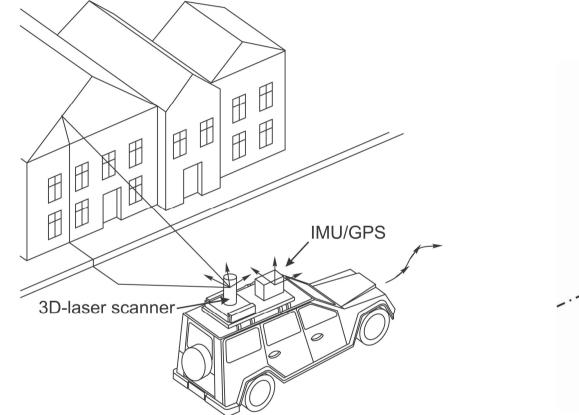
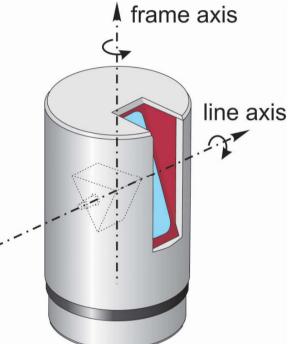


Boresight alignment method for mobile laser scanning systems

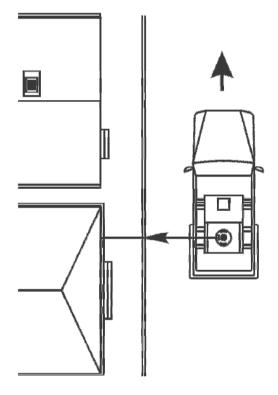
P. Rieger, N. Studnicka, M. Pfennigbauer *RIEGL* Laser Measurement Systems GmbH A-3580 Horn, Austria


www.riegl.com



Contents

- A new principle of boresight alignment for mobile Laser scanning systems
- *RIEGL's* new V-line of 2D and 3D laser scanners
- Experiments and sample data
- Conclusion



Typical configuration of a MLS system comprising a 3D-laser scanner and a IMU/GPS sub-system

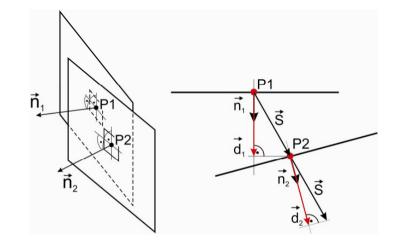
Contents | Principle | V-Line | Sample data| Conclusion

A new principle of boresight alignment

Mobile scanning of facades from different driving- and scanning directions.

Contents | Principle | V-Line | Sample data | Conclusion

www.riegl.com


A new principle of boresight alignment

$$\vec{d}_1 = (\vec{P}_2 - \vec{P}_1) \cdot \vec{n}_1$$
$$\vec{d}_2 = (\vec{P}_2 - \vec{P}_1) \cdot \vec{n}_2$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{d_1 + d_2}{2}\right)^2}{n}}$$

Mean square residual error distance of all corresponding planar surfaces.

Planar surfaces detected inside the point cloud are represented by their location and their normal vector.

"Corresponding planar surfaces"

	Contents Principle V-Line Sample data Conclusion
www.riegl.com	A new principle of boresight alignment - scan data adjustment

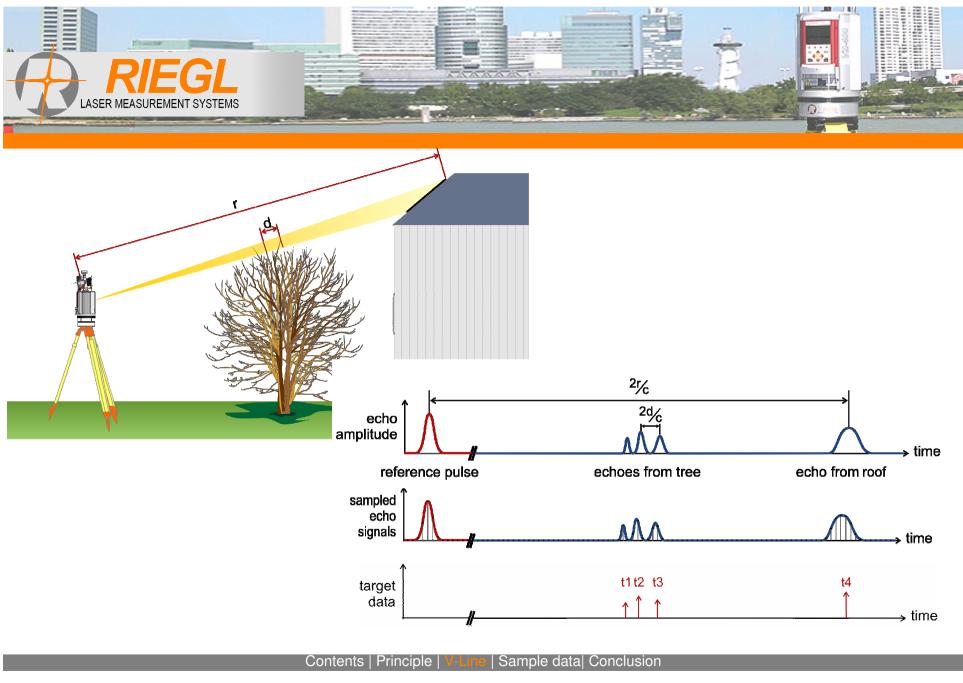
V-Line of 2D- and 3D laser scanners

Contents | Principle | V-Line |

e | Sample data| Conclusion

www.riegl.com

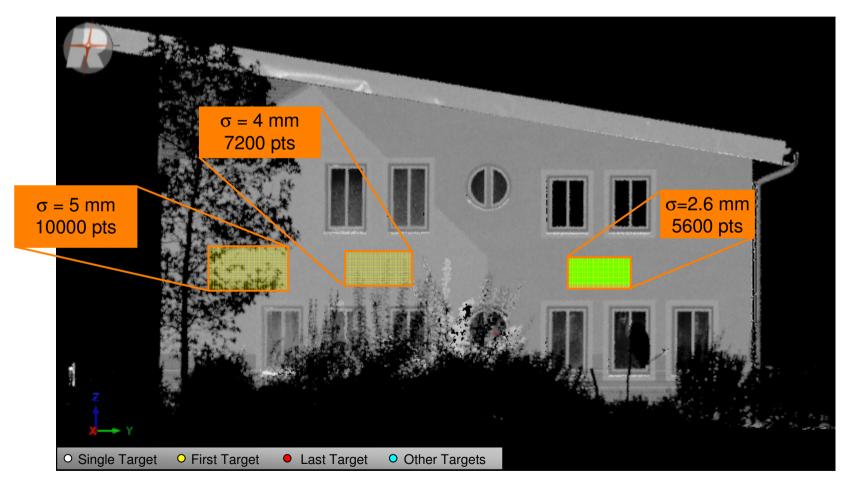
RIEGL's new V-line of 2D and 3D laser scanners



	measurement range	up to 500 m (80%) @ laser class 1, invisible laser beam
	repeatability and accuracy	better 5 mm
	effective measurement rate	up to 125.000 meas./sec
	field of view	100 deg x 360 deg

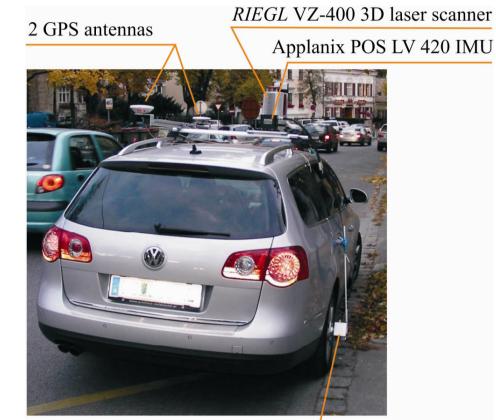
RIEGL VZ-400 Specification

Contents | Principle | V-Line | Sample data | Conclusion


RIEGL's new V-line of 2D and 3D laser scanners

www.riegl.com

RIEGL's new V-line of 2D and 3D laser scanners - Echo Digitization



Contents | Principle | V-Line | Sample data | Conclusion

www.riegl.com

RIEGL's new V-line of 2D and 3D laser scanners - precision and accuracy

DMI distance measuring indicator

Experimental mobile laser scanning system mounted on a car

Contents | Principle | V-Line | Samp

| Conclusion

www.riegl.com

average measurement distance	approx. 30 m
average point spacing @ 30m	5 cm
speed of the car	approx. 20 km/h
angular resolution of two subsequent laser measurements within one line scan	0.1 deg
scanning rate	120 line scans per second

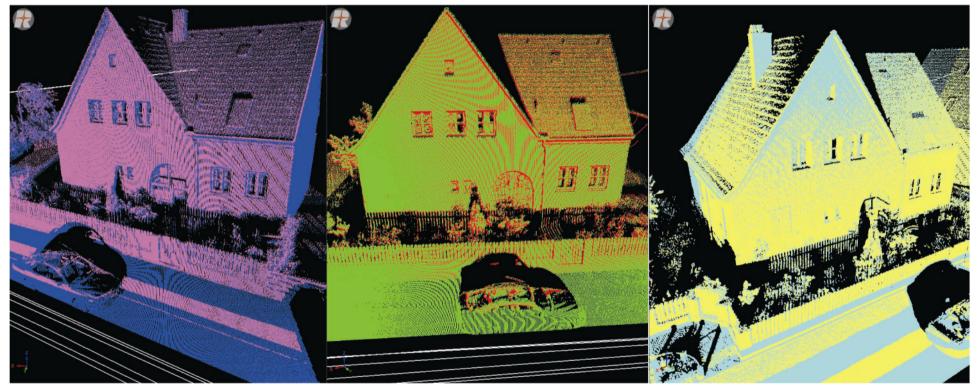
Used parameters for the surveying drive

Contents | Principle | V-Line | Sample da

Conclusion

RiPROCESS, *RIEGL's* software solution for processing the mobile scan data, covers four major tasks:

- Organize, process, and archive all data related to a single project.
- <u>Visualize</u> data on different scales, i.e., on a large scale as rasterized data, on a small scale as point clouds in 3D
- <u>Calibrate</u> the system and/or adjust the scan data to minimize inconsistencies in the laser data, also addressed as strip adjustment.
- <u>Export</u> data in widely supported formats for further processing


	Contents Principle V-Line Sample date	a Conclusion
www.riegl.com		Experiments and sample data

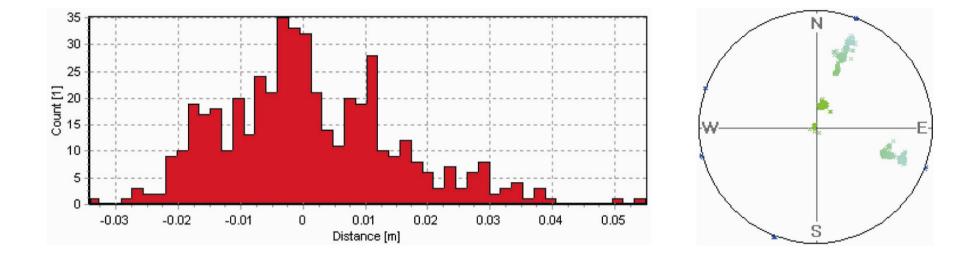
Orthogonal view of the common point cloud of 6 different scans

	Contents Principle V-Line Samp	le data Conclusion
www.riegl.com		Experiments and sample data

Point cloud of the scan to left backwards (120 deg) and to right forwards (300 deg) with respect to the car Point cloud of the scan to the left (90 deg) and to the right (270 deg) with respect to the car Point cloud of the scan to left forwards (60 deg) and to right backwards (240 deg) with respect to the car

Contents | Principle | V-Line | Sample

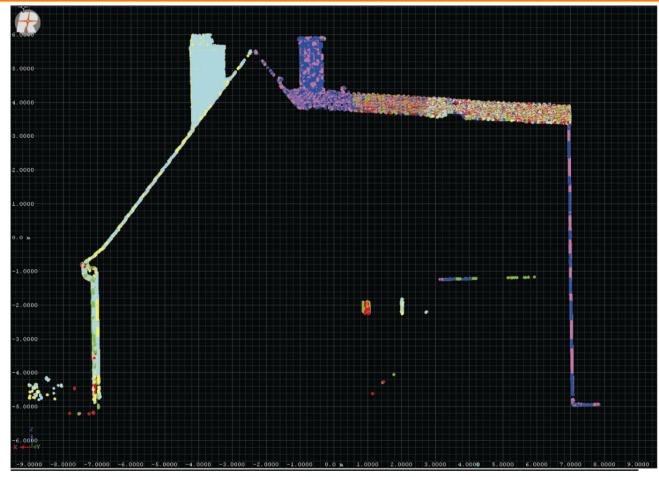
Conclusion


Calculation mode:	Adjustment (least square fitting)
Calculation time:	8 secs, 79 msecs
Min. change of error [m]:	0.000100
Search active:	True
Search radius [m]:	1.000
Angle tolerance [deg]:	5.000
Max. normal dist. [m]:	1.000
Quadtree cells - active:	True
Quadtree cells - count:	629
Calculation results	

Number of observations:			471
Error (Std. deviation) [m]:	\frown	\frown	0.0143
Name	Roll	Pitch	Yaw
VZ-400 (VZ400, 9996063)	-0.032	0.209	-0.868
RiPROCI	ESS Scan Data Adjustment P	rotocol	

 Contents | Principle | V-Line | Sample data | Conclusion

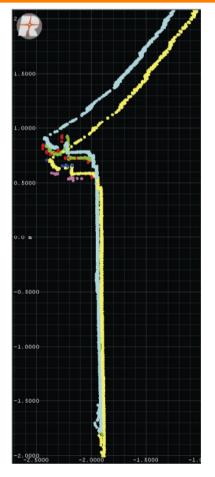
 www.riegl.com
 Experiments and sample data – Scan data adjustment - Protocol

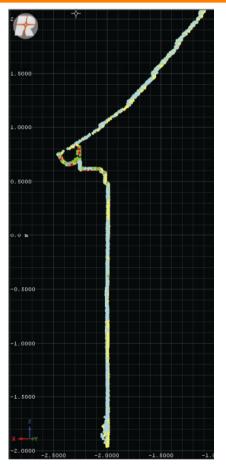


Histogram of residues

Orientation chart

	Contents Principle V-Line Sample data Conclusion
www.riegl.com	Experiments and sample data




Composite pointcloud cross section of the house before & after the boresight alignment

Contents | Principle | V-Line | Sample data | Conclusion

www.riegl.com

Detail of the left facade before & after the boresight alignment

Contents | Principle | V-Line | Samp

ta Conclusion

Conclusion

- 3D scanner in MLS is a <u>new technique</u>, data suitable for determination of boresight alignment
- High pulse rate & real-time waveform technique provides high point densities covering <u>surfaces</u> even hidden behind vegetation
- <u>Common planar surfaces</u> are input to the subsequent <u>scan data adjustment</u> algorithm which enables a robust estimation of the systems boresight angles
- The accuracy of the estimated boresight calibration values depends strongly on the <u>quality of the position and attitude data</u>
- MLS key components: IMU/GPS system of high long term measurement accuracy
 & fast and accurate 3D laser scanner
- <u>Advantage</u> of the proposed method: the possibility of determining the boresight angles by analyzing (user) scan data acquired in any desired area providing at least some common planar surfaces

Contents | Principle | V-Line | Sample data |

Thank you!

Contents | Principle | V-Line | Sample data C

Conclusion